Datenblatt

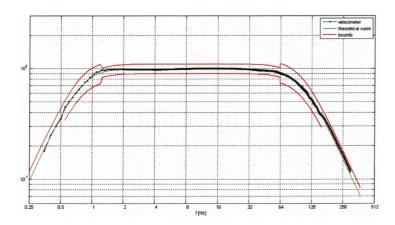
Veloget - Schwinggeschwindigkeitsaufnehmer

Beschreibung

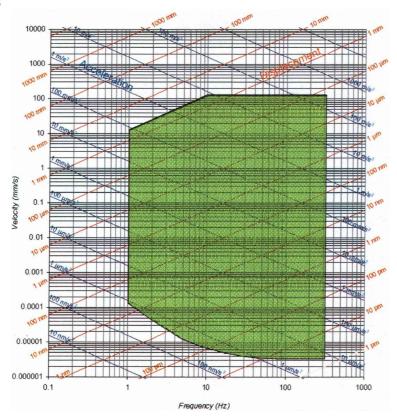
Beim Seismometer Veloget handelt es sich um einen Schwinggeschwindigkeitsaufnehmer, der mit einer, zwei oder drei Messachsen (Veloget 1D, 2D oder 3D) geliefert wird. Eingebaut in ein extrem stabiles, wasserdichtes Gehäuse kann es auf den Boden gestellt oder an die Wand montiert werden. Für die Horizontierung auf dem Boden sind die fest in die Grundplatte eingebaute Dosenlibelle und die 3 Justageschrauben vorgesehen.

Der Veloget-Sensor entspricht den Normen DIN 4150, DIN 45669-1, UNI 9916 und UNI 9614.

Der Schwinggeschwindigkeitsaufnehmer verfügt über einen hohen Dynamik-Bereich und das Ausgangssignal ist mit Sensoren anderer Hersteller kompatibel, so dass er an Datenerfassungssysteme verschiedener Hersteller angeschlossen werden kann. Empfohlen wird der Einsatz zusammen mit dem Dymas 24-System, zu dem SolGeo eine umfangreiche und ausgereifte Softwareausstattung zur Verfügung stellt. Einsatzbereiche können die Beobachtung von seismischen Aktivitäten oder auch Überwachungsmessungen auf Baustellen sein.


Technische Daten

Messprinzip	elektronisch angepasste Geophone
Anzahl Achsen	bis zu 3 orthogonal zueinander ausgerichtet
Sensor (-en)	Geophon GS-11D
max. Auslenkung der Schwingmasse	± 2,5mm
Frequenzbereich	konfigurierbar: 1 80 Hz oder 1 315 Hz, siehe Grafik
dynamischer Bereich	> 130 dB
Messbereiche	konfigurierbar: ± 12,5 mm/sec oder ± 125 mm/sec @ 16 Hz
Empfindlichkeit	400 V/m/sec oder 40 V/m/sec (je nach Messbereich)
Spektralrauschen	3,5 nm/sec (RMS, 16 200 Hz), 55 nm/sec (RMS, 1 315 Hz)
Linearität	± 0,4 dB (DIN 45699 Klasse 1), siehe Grafik
Phasenverschiebung	entspricht DIN 45699 Klasse 1
Selbsttest	Ausgangsimpuls 10 mm/sec
Spannungsversorgung	10 18 Vdc
Ausgangssignal	± 5V, differentiell
Ausgangsimpendanz	50 Ohm
Leistungsaufnahme	max. 240 mW
Schutzart nach EN 60529	IP65
Abmessungen	ca. L 150 x B 100 x H 75 mm
Masse	ca. 1,3 kg
Temperaturbereich	-20 +60°C


Anschlussbelegung

Anschlussbelegung				
Pin	Pin		Farbe Ader,	
intern	MIL	Signal	Bündel	Beschreibung
1	K	POWER+	bl, bl/ws	positive Versorgungsspannung
2	J	POWER-	ws, bl/ws	negative Versorgungsspannung
3	Е	CAL+	gn, gn/ws	positiver Eingang Selbsttest
4	F	CAL-	ws, gn/ws	negativer Eingang Selbsttest
5				nicht belegt
6	М	X-	ws, or/ws	negativer Ausgang Nord-Süd-Komponente bzw. X-Achse
7	L	X+	or, or/ws	positiver Ausgang Nord-Süd-Komponente bzw. X-Achse
8	В	Y-	ws, bn/ws	negativer Ausgang Ost-West-Komponente bzw. Y-Achse
9	Α	Y+	bn, bn/ws	positiver Ausgang Ost-West-Komponente bzw. Y-Achse
10	D	Z-	ws, ge/ws	negativer Ausgang vertikale Komponente bzw. Z-Achse
11	С	Z+	ge, ge/ws	positiver Ausgang vertikale Komponente bzw. Z-Achse
12	G	SHIELD		Schirme der Kabelbündel im Anschlusskabel
Geh.	U	SHIELD		Schirm Gehäuse

Frequenzbereich

Übertragungslimits

